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THE APPLICATION OF MULTIQUADRIC EQUATIONS AND POINT MASS
ANOMALY MODELS TO CRUSTAL MOVEMENT STUDIES

Rolland L. Hardy*
National Geodetic Survey
National Ocean Survey, NOAA,
Rockville, Md. 20852

ABSTRACT. The basic theory of multiquadric (MQ) equa-
tions relevant to crustal movement studies is summarized.
Both the hyperboloid and reciprocal hyperboloid kernels
of an MQ function are given a point mass anomaly inter-
pretation. They are applied to a realistic "error-free"
model of subsidence in the Houston-Galveston area, in a
pure prediction test. The standard error of a single
prediction was found to be less than 0.5 cm/yr for opti-
mum depths of point mass anomalies, using either the
hyperboloid or reciprocal hyperboloid as kernels. The
rectangular study area of about 88 by 124 km included

49 "error-free" sample points in an irregular pattern,
and 49 "error-free" prediction points in a grid pattern.
Subsidence rates in the area ranged from about -1 cm/yr
to -9 cm/yr. Only subsidence information provided by
geodetic leveling (simulated) was used.

Geophysical interpretation beyond developing the point
mass anomaly model was somewhat limited. Future tests
should include details of the gravity anomalies and
topography to determine the full potentiality and limi-
tations of point mass models for interpreting the mass
redistribution associated with crustal movement.

MULTIQUADRIC EQUATIONS

Multiquadric equations have been applied in the past to topography, gravity
anomalies, hydrologic studies, magnetic anomalies, terrain corrections, world
geoid determination, geologic subsurface studies, and photogrammetry, includ-
ing image reconstruction. This publication, together with a concurrent paper
coauthored with Sandford Holdahl (Holdahl and Hardy 1977) of the National
Ocean Survey (NOS) National Geodetic Survey (NGS), is the first report of

studies applying MQ equations to crustal movement.

The background information provided in this section is designed to famil-

iarize the reader with the many flexible features of MQ equations. This is a

*Prepared during a five-month grant period as a Senior Scientist in Geodesy,
National Research Council, National Academy of Sciences, Washington, D.C.,
while on leave from Iowa State University, Ames, Iowa.



condensed version of previous publications, and includes additional insights
into point mass anomaly methods. New ideas concerning the relationship of
MQ functions to deterministic covariance functions are presented. Novel
concepts involving "mascon anomalies" and isostatic trends of MQ functions
are described. It also shows that a variation of the fictitious observation
equations as used in least-squares adjustment can be used for least-squares

prediction.

The basic hypothesis of MQ analysis is that any smooth mathematical surface
and also any smooth irregular surface (mathematically undefined) may be ap-
proximated to any desired degree of exactness by the summation of regular,
mathematically defined surfaces, especially displaced quadric forms. "Dis-
placement" in this case roughly corresponds to "lag"” in a time series,; although
the analogy is by no means exact. MQ equations in Cartesian coordinates may,

in general, be represented by

n

O(X, Y, X., Y.) = £(X, ¥) = 2 1
jglajgt 50 Yy ( ) (1)

where the aj's are undetermined coefficients, and each Q(X, Y, Xj' Yj) is a
quadric kernel function of X and Y, centered at coordinates X,, Y.. The
ordinates Z of the complete function f(X, Y) are determined by the summation
(superposition) of many quadric kernels, hence "a multiquadric (MQ) function"

(Hardy 1971).
A frequently used example of a quadric kernel is the hyperboloid

0(xX, ¥, X, ¥,) = [(x - x‘>2 N <Y _ Y.)z .\ 52]1/2 =)

where § is usually interpreted in geometric terms alone as the perpendicular
distance from the X, Y plane to the hyperbolic minimum., The hyperboloid

kernel has a fairly remarkable relationship with its reciprocal

X, ¥, X, Y.) = [(x - x,>2 + <Y - Y.)z + 52] -1/2. (3)
J J 3 j ]



In this case, 8§ can be interpreted as the perpendicular distance of a unit
point mass (or point mass anomaly) from the X, Y plane on which the potential

(or disturbing potential) is evaluated. Consequently, two general branches

(harmonic and nonharmonic) can be developed from egs. (1), (2), and (3).

For disturbing potential (T) and other harmonic phenomena with respect to a

plane, the basic logical form is

I
N O s AR

j=1

Note that the universal constant of gravitation precedes the summation. The
coefficients 6j now take on the proper dimension and interpretation of point

mass anomalies with respect to standard point masses in the model.

For topography and other nonharmonic phenomena with respect to a plane, the

basic logical form is

n ,
G _ 2 _ 2 2]+1/2 _
K Z o [(x xj> t <Y Yj) + 6] H (5)

where H, representing topography, has been substituted for the dependent
variable Z. It is appropriate to give the symbols G, aj, and § in eq. (5)
the same interpretation as in eq. (4) because the theory of isostasy connects
these equations in a conceptual way. For this reason, a constant K has also

been introduced. This will be discussed in more detail later.

Equations (4) and (5) are transformable to spherical coordinates by noting
that § (depth with respect to a plane) can be visualized as a quantity (R-r),
i.e., the radial difference between two spheres with the same origin. Then
for every point mass anomaly at rj, Gj, Aj on the inner sphere r, there is a
radially corresponding Ri’ ei, Ai on the outer sphere R. Conceptually, we can

visualize an infinitely large set of Cartesian coordinates X, Y, Z as the

i
Similarly, an infinitely large set of Cartesian coordinates Xj, Yj, Zj can

locus of evaluation points on sphere R, including a finite set Ri’ ei, A



exist on sphere r, including the finite set r., 6., Aj. This conception

2
justifies the substitution of (Z-Zj) for 62 in egs. (4) and (5). Then T and
H are functions of the three variables, f(X, Y, 2). A transformation of eq.

(4) to spherical coordinates results in

n
G Y, o [R2 + % - 2Rr coswj] "1/2 g (6)
j=1

where

cosy. = cos O cosb, + sin 6 sinb, cos (A- A.).
J ] J ]

The radius r is not subscripted at this point, and is taken as the optimum
constant radius of the inner sphere. The formula for the best constant r

(Hardy and Gopfert 1975) will be given later.

Equation (5) is similarly transformable, resulting in

1/2 -

n
2

EZ a.[R2+r - 2Rr costp.] H (7)

K ¢ J J

i=1

where H represents topographic ordinates with rsspect to a sphere.

The formulation of a linear system of equations and the solutions for the
undetermined coefficients in egs. (4), (5), (6), and (7) all follow the same
pattern. This is also true for any new relationships that may be derived from
them. For example, Hardy and G&pfert (1975) have already derived particular
MQ relationships from eqg. (6) that express geoidal undulations N, components
of the deflections of the vertical & and n, gravity anomalies Ag, and gradi-
ents of the gravity anomaly 3 (Ag)/3R. Consequently (with K = y, K = 1, or any
other appropriate constant), we may express an MQ system of linear equations

in a general form as



n
= i=1, 2, 3...m >
. 0'j Qlj Ci 1 1 4y ¢ n (8)

j=1

where the symbols G and aj are still the same as previously defined. The
symbol Qij represents any particular quadric kernel, appropriately related in
a geometric and physical sense to the measurements Ci. The subscript pair ij
refers to the location of the i'th data point, and the location (node) of the
j'th kernel. These subscripted kernels form the coefficient matrix of the
observation equations. The kernel functions can be in either plane of spheri-
cal coordinates, and either harmonic or nonharmonic in their physical inter-
pretation. The symbol Ci indicates a column list of data ordinates such as
Ni’ Agi, Hi’ Ei, ni, etc. The equivalent of eqg. (8) in matrix notation for

observation equations is

Heolld BB rreraes o

where the Vi's are residuals.
When m = n, a unique solution is found. For the more general case, with

. -1 ,
m > n, the least-squares solution for the product of K ~, the universal con-

stant of gravitation G, and the coefficients is

(5] = [(oss) ™ (2u)] ™ [(00)" )] (10)

. s s . 2 .
For an analysis of the prediction error, we can determine LV~ with

12

viv = [o@'0)t (%) - 7 [e@%) 7 (@%1) - ] (11)

in which the subscripts have been omitted.
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Then the least-squares prediction of a column vector of Ep's is

[;’p] ) [ij] [(Qij)T<Qij>] - [<Qij>T 621)] | (12)

For the unique case, i.e., m = n, which is the limiting case of least

squares, eq. (12) for a single Zp reduces to

S = [0 [205] ™ [5)- | a3

We note that eq. (13) is the equivalent of the least-squares prediction
formula given by Heiskanen and Moritz (1967, p. 268) for covariance functions.
However, Qij is, in general, not required to be a covariance kernel corre-

sponding to Ci of Heiskanen and Moritz (Hardy 1976, 1977). The hyperboloid

kernel, wit@ nz statistical meaning or stochastic interpretation, is a good
contrary example. On the other hand, the reciprocal hyperboloid and its
spherical counterpart do qualify as deterministic covariance functions, i.e.,
these functions satisfy the geometric requirements of a covariance function

as given in Yaglom (1962, p. 24), but without regard for a random process
interpretation. Moreover, the underlying reality of eq. (4) and its spherical
counterpart (Hardy and Gdpfert 1975) is that they are intrinsically related to
Newton's laws, and are therefore deterministic. In this case, deterministic
means not only routinely solvable (nonsingular coefficient matrix), but that
the output is completely determined in a physical sense for a given input

(Miller 1963, p. 285).

There is another justification for asserting that some MQ functions qualify
as deterministic covariance functions. As shown by Heiskanen and Moritz
(1967), the covariance function C(y) can be expanded in Legendre polynomials

in the form

C(y) = Z ¢, Pn (cos ¥). (14)
n=2



If c(y), as given above, is appropriate for geoidal undulations, then the
c 's must be degree variances for the geoid. Thus, we can express a corre-
n

sponding linear system of covariance equations as

n' n' o _
N, = .C,.) = . P ( LY i=1, 2...m, m > n' (15)
i J};_;L BJ (\Plj) jz=:1 8] g::z c P (cos wl]) i !

where n' is the total number of covariance kernels, and n gives the degree of
each Legendre polynomial. The undetermined coefficients are designated as Bj
in this case because, in general, they do not have the point mass anomaly

interpretation, as given to the aj's, in the MQ harmonic method.

If the coefficients c, were foqnd deterministically, eq. {(15) could be
called a deterministic covariance function because the polynomials cnPn
(cos ¥) would be directly related to Newton's laws, and not depend on
stochastic processes. In other words, there are deterministic as well as
stochastic models in developing and using covariance functions, but the dis-
tinction is seldom made clear in contémporary literature.

A : 1
Empirical covariance kernels for’eq. (15) are frequently developed directly

from geoidal undulations in a stochastic process model
c(y) = M{N-N"'} , (16)

i.e., C(y) is said to be a function equal to the meén of a set of products
N-N' over a sphere, where all N and N' are geoidal undulations separated by
spherical distances Y that are consecutively specified varying from zero to
7. Formal integral formulas are frequently given, but they must be solved by

numerical summation with discrete samples.

An alternate approach is to use tabulated degree variances c, previously
determined by a stochastic estimate. These are substituted for c¢_ (up to a
n
truncation level) in the Legendre polynomial equivalent of C(¢), also modeled

in eq. (15). 1In both cases, the approach involves stochastic processes either

directly or indirectly.
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We can now illustrate a finite deterministic form of the covariance function
by expanding each MQ kernel in eq. (4), and its spherical counterpart (Hardy
and Goépfert 1975, eq. (5)) into an infinite series of plane and spherical

Legendre polynomials respectively. The spherical form becomes

n

n' ®
Z aj Z 1]’:1+l P (cos V.) (17)
j=1 7 n=2 R n J

where r is the radius of an inner sphere on which the point mass anomalies are

located, and R is the mean radius of the Earth.

Using Bruns' formula T = Ny and forming a linear system of equations as in

eq. (15), we have

n' © n
2 o 2 : z P (cosy. ) i=1, 2...m, m>n'. (18)
j=1 n=2 ' =

Now we can see that the MQ harmonic function, as developed in this report,
is the equivalent of a very special case of covariance functions, i.e., a
purely deterministic case. Equation (15) is identical to eq. (18) for the
case Bj = aj in which the undetermined coefficients are point mass anomalies,

provided also that the degree variances are simultaneously

(19)

Some modification of eq. (19) and further comment are appropriate because
the optimum inner radius r is determinable with the best-r formula previously
mentioned. Letting § represent the variable depth of point mass anomalies,

then § = R - r, and eq. (19) becomes

§ \n
-G 1 - -2
Cn = YR < E—) (20)
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where 60 is the optimum depth of point mass anomalies, as determined from the
best-r formula. Thus, the cn's in eq. (20) are optimum, deterministic degree
variances, containing two physical parameters (G and y) and two geometric
parameters (60 and R). Stochastic processes were irrelevant in their de-
termination. The next paragraph will explain why the difference between

deterministic and stochastic degree variances is an important distinction.

The contemporary use of the covariance kernel in eq. (15) is deficient
because the coefficients cn in the kernel are, as previously mentioned,
directly or indirectly estimated by a principle involving stochastic
processes on a sphere. Lauritzen (1973) has called attention to this
deficiency on highly theoretical grounds pointing out that a Gaussian random
field on a sphere is not ergodic. Consequently, sample averages over a
sphere cannot rigorously determine an apparent covariance function or degree
variances. According to Lauritzen (1973, p. 80), "...the problem is not

suited for statistical treatment...."

MQ analysis avoids this difficulty by being more explicit in a deter-
ministic sense, particularly concerning a point mass model. Hardy (1976,
1977) has previously shown that for MQ harmonic analysis, determining
apparent or empirical covariances in a stochastic sense is irrelevant.
Moreover, Hardy and Gdpfert (1975) made a remarkable and practical
confirmation of Lauritzen's theoretical point of view in deriving the best-
r formula. 1In deriving this formula, which is equivalent to determining
the optimum depth of point mass anomalies, the solution was completely
independent of the data ordinates N. 1Instead, the best-r (optimum 60) was
dependent almost exclusively on the average spacing of data ordinates, and

not on the magnitude of ordinates or averaging of lagged ordinate pairs

over a sphere.

To conclude our comments on covariance functions, we will justify using
MQ equations instead of expanding them into Legendre polynomials for

discrete data as used in eq. (17) for illustrative purposes. The reasoning

is slightly indirect, but not difficult. First, to reduce a problem involving

discrete data to an optimum point mass anomaly model for the solution
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involves making a simplified or engineering-type assumption. This assumption
helps solve the problem in a relatively simple manner, and implies the
willingness to accept a result that will not be the same as for a more
complete and accufate data set. Moreover, it enables one to get the most
out of the available discrete data without obscuring the basic physical
meaning of the results. In any case, having made this a priori decision,
it is better to use a simple method that responds exactly to Newton's laws
for a given input of discrete data than to substitute a more complicated,
infinite Legendre series for the computation. Such a substitution not only
compounds the computational aspect, but it also involves an additional
approximation because of the necessary truncation of the series. Perhaps
an exception to this line of reasoning could be made if it were actually
possible to use the orthogonal polynomial properties of the Legendre series
to determine coefficients or degree variances unambiguously by formal and
exact integration. Generally, in practice, this is not the case. So the
application of a multiquadric series to a discrete data problem, reducible
to an optimum point mass anomaly problem as shown above, will probably be
superior to other contemporary methods regarding the following features:

1) accuracy of the solution,

2) computational efficiency, and

3) physical interpretation of the results.

Item 3 in this list has been the basis for studying the apparent
isostatic response of eq. (7), based on coefficients (point mass anomalies)
determined from a variation of eq. (6). It has been previously shown
(Hardy and GSpfert 1975) that the coefficients determined from one type of
MO series can be substituted into any other appropriate MQ series for
prediction purposes. Thus, for example, geoidal undulations N,_ can be

p
predicted from

< [®

n
2: aj [R2 + r2 - 2Rr cos ij]—l/2 p=1, 2, 3... (21)

p j=1

when the coefficients aj have been solved from a linear system of equations
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n R - r cos wl 5 _
G Z o, J =Ag. i= l; 2---mrm>n (22)
4 3 2 L..R i
j=1 L, ij
1]
in which
L. . = <R2 + r2 - 2Rr cos w..>1/2 .
i] 1]

Equation (21) is a simple variation of eqg. (6), obtained by substituting
Ny for T (Bruns' formula). It is also the basic MQ form for expansion into
a linear system of Legendre polynomial equations as given in eq. (18).
Equation (22) is a linear equation expansion of a basic MQ series derived
from eq. (6). The left hand side of eq. (6) and its derivative 3T/3R are
substituted into one of the basic forms of the fundamental equation of physical

geodesy, namely Ag = -3T/3R - 2T/R.

By analogy, the implication is also present that predictions of Hp can be

made with eq. (7), provided the coefficients o; are determined from a linear

]
system of equations, such as

-1/2 -

<&

N, i=1, 2...m, m > n. (23)

.

n
J=

Q. [R2 + r2 - 2Rr cos w.,]
1 1]

In this case, the mathematical relationship is simpler. The kernel functions
in egs. (7) and (23) are merely reciprocals of each other, and K replaces Y,
but the physical interpretation is more difficult. The validity of the
relationship between the two equations is not immediately obviocus. Equation
(7) involves topographic heights which are generally a nonharmonic¢ phenomenon.
The relatively clear relationship of gravity anomalies to geoidal undulations,
based exclusively on potential theory, is not present in the possible
relationship of topographic heights to geoidal undulations. Consequently,
we must consider other or indirect effects that would somehow relate
topographic heights to point mass anomalies. One possibility for considera-

tion is the theory of isostasy. This theory is based on the existence of
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some form of mass deficiency under topographic highs and mass excesse ' under

topographic lows (bathymetry or ocean bottoms).

A few check computations with a global model have confirmed that the

function for H in eq. (7) does indeed tend toward positive values in regions
dominated by negative point mass anomalies as determined from the system
in eq. (23). For regions of predominately positive anomalies, the ueoid
from eq. (23) tends to rise appropriately, whereas H in eq. (7) tends to

subside to negative values. Thus, the topographic heights in this case

are not at all related to the Molcodenski-type height anomaly, which tends

to have the same algebraic signs and magnitudes as the geoidal undulations

N. Instead, eg. (7) modulates the topography in close agreement, freguency-
wise, with isostatic tendencies indicated by contemporary theories of isostasy.
The appropriate amplitude modulation of the topography computed from eqg. (7)
is dependent on the magnitude of the constant K, however; a detailed rigorous
computation of this constant has not yet been developed. It is beyond the
objectives of this report to develop a complete isostatic model, which would
involve several refinements of the M) method for determining point mass
anomalies. We will only suggest a direction future investigations should

take in developing such a model.

Equation (7) does not appear to include the influence of the Earth's density,
but this effect may be considered to be a part of the constant K. This is
only one of several effects that should be considered in the computation of
this factor. It is among the most important, and other effects will depend
upon it. An extension of the concept of a point mass anomaly to a
représentative volume distribution of the mass anomaly is undoubtedly
necessary. In this report we have been careful to use the expression
"point mass anomaly" rather than "point mass." Hence, the mass anomalies
that sum to zero have already been superimposed upon the interior of a
spherical approximation of a Standard Earth Model. It appears now that our
Standard Earth Model should include a density profile up to the crust-
mantle boundary at least, in addition to the usual Geodetic Reforonos

System.
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In the context of a point mass anomaly, negative does not mean less than
zero mass. It means less than a normal mass, with respect to some standard
mass distribution that is intrinsically positive. The point mass anomaly is
initially associated with the point location of the anomaly at the best-r
value (optimum 60). In combination with a proper volume for the mass anomaly,
it is easy to perceive that buoyancy with a fluid Earth of variable density
will provide the basis for the rise or fall of a mass anomaly to a position
of equilibrium above or below the best r, thus physically confirming the
indication of an isostatic trend. Determining the proper scale factors for
propagation and amplification of this effect at the crustal surface requires
considerably more analysis than can be accomplished here. Nevertheless, we
have introduced the key concept of "mascon anomaly," which can be either neg-
ative or positive, to incorporate a density model in the computation of the
constant K in eq. (7). This is a simple modification of the concept of a

mascon, ordinarily used with only a positive definition.

During the future development of the theoretical details for complete
quantification of the isostatic trends represented by eq. (7), we must
remember the contemporary difficulties with all isostatic models. The "real"
Earth almost never conforms with any isostatic model to a degree of precision
consistent with the idealization frequently used to simplify the
computations. This will doubtlessly be true also of the MQ approach to an

isostatic theory. Nevertheless, an earlier, almost completely heuristic
interpretation of the hyperboloid kernel as being deterministically suitable
for topography (Hardy 1972) is being supported theoretically and practically
in an unusual way. As with point mass and material surface methods in

general, "...This case is more or less fictitious but it nevertheless is of

great theoretical importance." (Heiskanen and Moritz 1967, p. 5.)

During the preceding presentation, we have frequently referred to the best-
r formula, sometimes indirectly by comments on an optimum radius or optimum
depth of point mass anomalies. The parameter r was introduced in eq. (6)
and defined as the optimum constant radius of an inner sphere on which point
mass anomalies are located. We will now discuss the methods of determining

the best-r, including the best-r formula (Hardy and G&pfert 1975; Hardy 1976).
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The radius r in a system of equations, as in eq. (23) for example, was
treated originally as an unknown in addition to the undetermined coefficients
uj, making the system nonlinear. When this is done, the number of obser-
vation equations is one less than the number of unknowns, provided we center
an MQ kernel at every observed data ordinate Nj. For maximum use of
observed data, an MQ kernel was used at every observed data ordinate; the

formation of fictitious observation equations easily removed the

deficiency in the number of equations.

The validity of this aspect of the solution was not discussed thoroughly
in the otherwise complete derivation of the best-r formula by Hardy (1976).
We will now discuss fictitious observation equations, as applied to least-

squares prediction, in greater detail than in any previous report.

For background information, we note that fictitious observations equations
are already an accepted procedure in least-squares adjustment, in contrast
with least-squares prediction. According to Hirvonen (1971), fictitious
observations are often used in least-squares adjustment to reduce the
number of observations in a highly overdetermined system. A single func-
tional observation replaces a number of observed guantities by subdividing a
large problem into smaller parts that can be solved more routinely. In
preprocessing a group of observations of the larger problem into a single
representative observation, i.e., a fictitious observation, it is essential
to use the statistical properties of the weighted mean of the group. A
simple example of a fictitious observation is to replace the several observed
angles at a traverse station with a single mean value which is used in the

subsequent traverse adjustment.

In least-squares prediction with MQ functions, a minor variation of this
same basic principle can be used. The prediction problem may be viewed
as one involving a finite sample of ordinates from an indefinitely large
prediction vector. The problem is to find a solution that is optimum in some
sense, even though the system of equations for doing so is underdetermined
(Moritz 1976). An empirical covariance kernel function is one least-

squares method of optimizing an underdetermined system, but it is not the
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only method. In fact, redundancy may be present in all of the computational
aspects of least-squares prediction with MQ functions. In some cases the
fictitious observation concept of least-squares adjustment may be directly

applicable to a part of the problem without modification.

Consider, for example,a set of observations of the ordinate or other
measurable quantity at a single geographic location. Obviously, a single
most probable value determined from either a weighted or simple mean,
according to circumstances, may be substituted for the larger set.
Generally, nothing will be lost in a least-squares adjustment by making
this substitution, and some gain in computational efficiency can result
from it. Generally, if least-squares prediction is somehow dependent on
the set of observations rather than each observation by itself, nothing can
be gained by forming observation equations for each separate observation
in lieu of the single mean, and to do it will decrease computational
efficiency. Theoretically it is valid to form an equation for each
observation, but it is not useful. On the other hand, the mean anomaly
concept, as mentioned above, has an exceptional property which may be applied

in a useful manner to either least-squares adjustment or least-squares

prediction.

The theoretical justification for using mean anomalies in least-squares
prediction with MQ functions is rather unique; an expansion of the number
of observation equations is merely a useful byproduct. A mean anomaly is
numerically equal to the weighted mean of several ordinates at different
locations, and in this respect is very similar to the mean of several
ordinate observations at the same location, as in the preceding paragraph.
This is not a complete definition however. We must specify the single
point location as well as the magnitude of a mean anomaly to make appropriate
use of it. Generally, a single point location for a mean anomaly is the
center of a block or other regular figure represented by the anomaly. This
point location is generally not coincident with any of the separately
observed ordinates. In any case, a discrete mean anomaly cannot occupy
the point location of more than one of the single ordinates in the set
or group, and even this possibility can be eliminated by an appropriate

choice of regional boundaries.
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Thus, under certain conditions, an MQ least-squares prediction method
on a sphere may be composed of two parts; one part minimizes the sum of
the squares of the residuals at all observed data ordinates making use
of real observation equations; the other part minimizes the sum of the
squares of the residuals at the estimated regional mean anomaly ordinates
(a single ordinate for each region), making use of fictitious observation
equations. The justification for using fictitious observation equations,
which are consistent with predictions of the mean regional anomalies, is
fundamentally the same as for estimating the mean of a set of observations
in the preprocessing commonly associated with least-squares adjustment.
In the case of least-squares adjustment there is a decrease in the number
of observation equations, which is computationally efficient. In the case
of least-squares prediction there can be an increase in the number of
observation equations. Ordinarily this is not computationally efficient,
but it will be useful if one is enabled to get a routine solution of an
otherwise underdetermined system of equations. The usefulness becomes
particularly noteworthy when the real observation equations by themselves
fail to give continuous predictions of regional anomalies that are consistent

with the mean of discrete data in each region.

To illustrate the point we will consider an alternative approach to
solving the system of equations in eq. 23. Using n observed geoidal
ordinates on a sphere, and n MQ kernels, we may obtain a unique solution
for n undetermined coefficients aj, provided any arbitrary finite value
for the radius r (except r=0 or r=R) is assigned in advance. This is
equivalent to an assumption that there is no rational method of determining
the best-r either a priori, or as part of the solution for the aj's. Then,
in general, all such unique solutions obtained by changing r arbitrarily
will fit the observed geoidal ordinates exactly except for roundoff
error. On the other hand, only one of these unique predictions {(the one
with the best-r) will correspond to the minimization of the squares of the
difference between the computed regional mean anomalies on the sphere and
the predicted regional mean anomalies on the sphere. Unless an appropriate
modification of the set of observation equations is made, finding the best-r
remains a matter of trial and error. The real observation equations for

single ordinates are, by themselves, ineffective; they do not assure
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consistency between the measured and the predicted mean anomalies. The
desired consistency may be assured by supplementing the real observation
equations with fictitious observation equations, each of which incorporates
the correlation éf a set of real observations in a region with its a

priori estimated (or fictitious) mean. As a by-product, the extra observa-
tion equations provide a means for determining the best-r simultaneously with

the undetermined coefficients aj in a nonlinear least-squares solution.

The principle described above was originally used to determine the best-r
by least squares prediction with MQ functions. Fictitious bbservations.
were introduced with the assumption that the most probable ordinate at. the
midpoint of a line joining two adjacent actual ordinate observations was
equal to the mean of the actual observations. This is ﬁgihing more OY
less than the computation of the mean anomalies for small regions having
only two data points each, and placing the resulting mean ordinate at the
centroid of the two-point regional data. The nonlinear least-squares
system of equations based on this concept converged rapidly to give a
solution for the undetermined aj's and also the best-r. It was foundv
later that the best-r, determined by least-squares in this way, was not
significantly different from that determined by what is now called the
best~r formula. This formula and related equations will be discussed in

the following paragraphs.

The best-r formula resulted from a simple extension of the concept of
fictitious observation equations as applied to least-squares prediction with
- MQ equations. In forming three real observation equations for data
ordinates at the vertices of an equilateral triangle on a sphere, and
adding these to a single fictitious observation for the computed mean
anomaly of these three ordinates at the centroid of the same equilateral
triangle, a rather remarkable relationship was discovered. A unique solution
for r existed which was not dependent at all on the magnitude and algebraic
sign of the ordinates at the vertices. This meant also that for any adjacent
equilateral triangle, congruent with the first triangle on one side, the same
unique solution for r existed without regard for the magnitude or sign of the

ordinates at ends of the congruent side, nor of the ordinate at the new vertex.
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In brief, the discovery rapidly expanded into the concept that there is a
unique best-r for any number of data ordinates on a sphere, independent of
the magnitude and sign of the ordinates, particularly if the data are
regularly spaced at the vertices of nonoverlapping equilateral triangles.
Consequently, MO equations and the spherical trigononometry of equilateral

triangles were used to develop the following condition equation:

1 + 2 3

— \ - =
R-x (RZ + r2 - 2Rr cos ws)l/z <R2 + r2 ~ 2Rr cos ¢m>l/2

0 (24)

where all parameters have been previously defined except ws and wm. The
symbol ws represents angular length of a single side of an equilateral
spherical triangle. The symbol wm represents the angular distance on a
sphere from a vertex of the same triangle to the surface centroid of the

triangle.

Equation (24) may be solved directly for r, when n data points on a sphere
of given radius R have been specified and the corresponding ws and wm are
computed. Formulas for ws as a function of n and wm as a function of ws
are given below. The kest-r formula, based on a least-squares prediction
principle, is very convenient for MQ and other point mass methods. It means
that the best-r can be determined before using systems of equations such as
eq. (23). Consequently, linear least squares rather than iterative non-
linear methods can solve all MQ systems used to date (1977).. As previously
mentioned, the best-r formula indicates that optimum least-squares
prediction with the MQ method is not dependent on averaging ordinate
pairs over a sphere, as used in autocorrelation to determine an empirical
covariance kernel function. Equation (24) provides an optimum solution
based only on the spacing of data ordinates, not the averaging of ordinate
pairs at various distances as for empirical covariance. Thus, the theoretical

difficulties described by Lauritzen (1973) are not relevant to MQ equations.

On the other hand, a potential difficulty was present because equal
spacing of data or nodes cannot be made exactly on a sphere, except for

special cases. However, use of the best-r formula in practice indicates



19

that it also works extremely well for unequally spaced data. With irregulat
data spacing, the computed Y5 is a close approximation if not the exact
mean side length of an array of nonequilateral, nonoverlapping triangles

on a sphere. In fact, there is no significant difference in determining

the best-r for irregularly spaced data by the above formula, as compared
with a simultaneous nonlinear least-squares solution for r and aj's using

the same irregulary spaced data.

Useful auxiliary formulas for (24) are

-1 ™ 172
ws (n) = 2 tan 1l - 2 cos 3(n-2) (25)
in which n is the number of nodes, and in turn
-1 21/2 (1 - cosws)
wm = tan 172 (26)
(cos ws - cos 2ws)
Table 1, which lists the best-r for 10 <n 2-500, was developed using
egs. (24, (25), and (26).
For regional rather than global cases, eq. (25) becomes
1/2
ws (n, A) = 2 tan ! 1-2 cos A >+ % (27)

6(n - 2) R

in which A is the area of the region on a sphere, and n is the number of nodes

used in the region.

As a result of studies connected with this report, the estimate of optimum
depth § for point mass anomalies with respect to a plane as in eg. (4) can

be found from



20

.\ 2 _ 3 -6
62 + 2% 5% + 173 HY? (28)

O | =

in which s is the length of a side of the nonoverlapping equilateral triangles
(or the mean side length of nonequilateral nonoverlapping triangles) with
nodal points located at the triangle vertices. This § should also probably
be used in eq. (5) for future studies involving an interaction of harmonic

and nonharmonic functions. For topography and other nonharmonic phenomena
alone, the following formula has been used with respect to a plane,

§ = 0.665 D2 ‘(29)

where D is the rectangular grid spacing of nodes (or the equivalent mean for
irregularly spaced nodes). Equation (29) was empirically developed with an
MO fit to spline functions and has not been shown to be an optimum estimate.
However, it has provided workable, smoothing values for all cases encountered

up to this time.

This concludes the review of MQ analysis that has had a bearing on the study
of crustal movement applications to date. Future development of the method
may involve such matters as hybrid data, use of the osculating surface
principle, and concentric superposition of MQ functions. At the present time
(1977) , the most complete document on such matters is a report to the National

Science Foundation, under Grant GK-40287 (Hardy 1976).

VERTICAL CRUSTAL MOVEMENT STUDIES

Studies of crustal movement provide a better understanding of Earth
dynamics. Practical benefits could come from the ability to predict
earthquakes, volcanic eruptions, and other consequences of either sudden
or long-term crustal movement. Repeated geodetic leveling over a significant
period of time with adeguate connections to tidal stations is one of several
measurement techniques that can help solve such problems.

Apparent changes in elevation in an earthquake zone are of special
interest. A rough analogy with the stress-strain measurements in the me-

chanics of materials seems appropriate. A homogeneous elastic material is



Table 1. —--Best radius (km) of n point mass anomalies for
a sphere with a radius of 6371 km (global case)
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Best r Best r Best r

n (km) n (km) n {km)
10 3603.40 175 5628.46 340 5830.21
15 4070.61 180 5638.31 345 5833.99
20 4350.64 185 5647.78 350 5837.69
25 4544.22 190 5656.86 355 5841.,29
30 4688.90 195 5665.62 360 5844 .84
35 4802.63 200 5674.06 365 5848.32
40 4895.21 205 5682.20 370 5851.73
45 4972.54 210 5690.05 375 5855.08
50 5038.48 215 5697.64 380 © 5858.36
55 5095.60 220 5704.97 385 5861.57
60 5145.73 225 5712.07 390 5864.73
65 5190.20 230 5718.94 395 5867.83
70 5230.00 235 5725.59 400 5870.87
75 5265.93 240 5732.05 405 5873.85
80 5298.57 245 5738.30 410 5876.79
85 5328.40 250 5744.38 415 5879.67
20 5355.81 255 5750.28 420 5882.49
95 5381.11 260 5756.00 425 5885.27
100 5404.54 265 5761.57 430 5888.01
105 5426.36 270 5767.00 435 5890.69
110 5446.73 275 5772.28 440 5893.34
115 5465.81 280 5777.42 445 5895.93
120 5483.72 285 5782.43 450 5898.,49
125 5500.59 290 5787.31 455 5901.00
130 5516.51 295 5792.08 460 5903.48
135 5531.54 300 5796.72 465 5905.91
140 5545.82 305 5801.26 470 5908.31
145 5559.37 310 5805.68 475 5910.67
150 5572.26 315 5810.00 480 5912.97
155 5584.54 320 5814.23 485 5915.26
160 5596.26 325 5818.36 490 5917.52
165 5607.47 330 5822 .39 495 59219.74
170 5618.19 335 5826.34 500 5921.92
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said to obey Hooke's law. If stress is increased at a uniform rate,
deformation of a test specimen also increases at a uniform rate up to the
yield point. A nonlinear response to increased stress at a uniform rate
indicates the yield point. In a sense, failure of the specimen has already
occurred even though the impending rupture is slightly delayed. Detection
of the yield point before rupture actually occurs is tantamount to predicting
that an actual rupture will occur. Because of nonhomogeneity and many other
causes, the Earth's behavior is by no means as simple as this analogy.

Also, the "state of the art" and the availability of long-term repeated
geodetic leveling of sufficient precision practically limits crustal
movement prediction to linear models at this time. This situation is
expected to improve as more leveling data are collected in areas of
particular interest. Special consideration of the data needs for crustal
movement studies as well as consideration of the traditional geodetic
control and engineering uses of height information will improve data

density and distribution characteristics. Also, the evolution of analysis
methods to a more sophisticated level can be expected to improve the

situation in the long run.

This technical report is concerned with the development of a linear
prediction model based on point mass anomalies. Such an approach may be
productive because it can be logically assumed that crustal movements
are accompanied by, if not caused by, some internal mass redistribution

within the Earth.

The contemporary strategies and models for predicting vertical crustal
movement, based on repeated geodetic leveling in the United States and
Canada, were presented in a review paper by Holdahl (1975). Holdahl (1977)
has also prepared an up-to-date report on the method preferred and employed by
the NOS/NGS (as applied to the "Palmdale Bulge" in southern California). The
MQ equation and point mass anomaly approach, as proposed in this presentation,
is a variation of that method. Therefore, only that method will be described

here, and only to the extent necessary to show the MQ relationship.
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COMBINED LEAST-SQUARES ADJUSTMENT AND
LEAST-SQUARES PREDICTION
The NGS method associated with verticél crustal movement studies is a
combined adjustment and prediction method. A least-squares adjustment
of leveling circuits is performed simultaneously with a least-squares
prediction of the linear coefficients in a function used to model surface

velocities.

Observation equations are developed in the following form (Holdahl 1977):

Rp-a, i " Pp, i " Pa, i Mpea, i (30)

The left hand side is the correction (residual) for an observed height
difference between A and B at time tj. The observed height difference is
symbolized with the term Ahb—a, i- The parameters are symbolized with hg j
and hy, i, i.e., the adjusted heights for A and B, also at time tj. When
crustal movement is not a consideration (static Earth model) this formation
of observation equations is well known and routine because time t; is
irrelevant. Repeated levelings at different times are an essential
ingredient of vertical crustal movement studies; the formulation in eq. (30)

is suitable for an expansion to include leveling data of this type.

Conceptually, the height of A at time t; is the height of A at an earlier
time t, plus the product of the time difference and a constant velocity.
Because the surface velocity is variable as a function of position in a study
area, it may be expressed as a function of plane coordinates X and Y. For

a single bench mark at A, we then have the following expression:

- ! _ i i
ha’ ;= ha, o + (ti to) v(xa, ya). (31)
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Substituting eq. (31) and a similar one developed for h i into eq. (30)

b,
results in a new observation equation. It has the form:

= + - -—
Rpea, i = Pp, o ¥ (&) — 8 VX, ¥) = h,

14

-{(t, -t ) V(X_, Y ) - Ah (32)
1 o a a

b-a, i’

For this particular case, the new parameters, i.e., the adjusted heights

hb, o and ha,

V(X , Y ) have replaced the parameters h and h . in eq. (3). With
a’ "a b, i a, 1 )

sufficient redundancy in a set of observation equations, these parameters can

at time to’ and the unknown velocities V(Xb, Yb) and

be directly solved. However, we will only get discrete velocities at the
adjusted circuit junctions where leveling has been accomplished two or more
times. An important point should be made here to clarify the adjustment-
prediction distinction as previously stated. Generally, there is no provision
for incorporating velocity observations directly in eq. (32);‘V(Xa, Ya) and
V(Xb, Yb) are unknowns for which observations are not available; only height
observations are directly available. An exceptional case occurs if either A
or B is a tide gage or Very Long Baseline Interferometry (VLBI) station;
otherwise velocity is only an indirect geometric and physical consequence of
a height change with elapsed time. Consequently, the heights are "adjusted"
by least-squares as a function of direct height difference observations and
time differences, whereas the velocities are generally an indirect or
"predicted" consequence of the same adjusted observations of height and time
differences. It is also desirable to "predict" or interpolate velocities at
points away from adjusted circuit junctions. This can be accomplished with
continuous "least-squares prediction," which is generally concerned with
converting discrete samples of a real continuous function into a reasonable
and logical substitute continuous function; hopefully, the substituted
function bears a close resemblance to the original unknown function in most
of its unmeasured regions. A prediction function previously used in the NGS

method has been an ordinary two-dimensional polynomial of the form

2
= + + + ..
V(Xa, Ya) c0 Cl Xa 02Ya c3XaYa + C4Xa + . (33)
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When this prediction form and its counterpart for V(Xb, Yb) are substituted
in eq. (32), we have the final form for a unit-weighted observation equation

involving both least-squares adjustment and least-squares prediction:

2
= + - + + c Y, + e
Ro-a, i = Pp, o 7 (& 7 E) (Co R e T )

2
- ha o - (ti - to) <co + cha + c2Ya + C3XaYa + C4Xa + ---) (34)

r

Ahb—a, i’

r
The other unknowns are the polynomial coefficients ¢ , ¢

In this form, hb and h are the unknown heights at A and B at time t .
;, O a, o o}
1’ c2 ...cn. The
question has arisen as to whether more polynomial coefficients can be deter-
mined in eq. (34) than the number of unknown but determinable velocities in
eqg. (32). The indications are negative, which seems reasonable based on the
combined least-squares adjustment/least-squares prediction nature of the

solution and some of the known limitations of each procedure by itself. This

is part of a solvability problem that has been discussed in another paper

(Holdahl and Hardy 1977).

After the unknowns are determined from observation equations of the type
given in eq. (33), it is easy to recover any height at any time ti by a set
of equations similar to that in eq. (31). Moreover, a continuous prediction
of the surface velocities in the study region can be accomplished by evalu-

ating and contouring a discrete set of evaluated V 's in the form

~ 2
VX , Y)Y =¢c +c¢cX +¢c.Y +¢c.XY¥Y + ¢ X + e 35
(p p o 1'p 2'p 3pp 4p (35)

Many surface fitting techniques could be used to replace the ordinary poly-
nomial series in eq. (33). The apparently advantagecus properties of MQ equa-

tions in many applications as reported by the author and others have led to
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considering the MQ method in this report. The modification is very simple.

We let

n

Y,) = X., Y., X., Y. i =1 >
VX, ¥)) j‘él ij(i Y, XJ'YJ) i , 2 m m>n (36)

in which the V(Xi, Yi)'s, i=1,2, 3, ..., correspond to V(Xa, Ya),

V(Xb, Yb), V(Xc, Yc) ,s0. and the Xj' Yj's are nodal points with their
associated coefficients wj. These equations can be substituted in eq. (32)
and will produce an observation equation similar to that in eqg. (34) in which
the MQ coefficients are unknowns instead of the polynomial coefficients.
After a least-squares solution, the predicted velocities are determined by

using the determined coefficients wj in the form

n

V(X , ¥Y) = o(X , Y, X., Y.). 37
(%, ¥) jzzjleg(p o g0 1) (37)

There is no change in the method of determining adjusted heights at any

time t..
i

PHYSICAL INTERPRETATION OF THE MULTIQUADRIC COEFFICIENTS

If the quadric kernel in eq. (36) is a reciprocal hyperboloid, a physical
relationship to point mass anomalies is involved in some way in accordance
with the previous discussion concerning eq. (3). Collectively, the MQ

prediction of a single velocity at X Yp, as in eqg. (37), is the sum of

p’
contributions from n kernel functions, each of which is a reciprocal distance
times a numerical coefficient. Because the end result is the velocity

&(Xp, Yp), each contribution must be regarded as a linear component of that
velocity. All surface velocities V(X, Y) are clearly the rate that
topographic heights change with time, i.e., 9H/3t. The height H is also a
function of X and Y. This is reflected in eq. (5) involving the hyperboloid

as an MQ kernel.
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Note that we purposely used wj's as coefficients in egs. (36) and (37)
instead of a.'s as in egs. (4) and (5). Although the w.'s are related to
the aj's, itjshould not be expected that they have exactly the same inter-
pretation because the crustal movement problem involves velocities. Let us

postulate that

do,
w, = —d = constant
J ot

i.e., that the wj's represent the constant rate that the point mass anomalies
aj are changing with time. This is certainly consistent with eq. (4)-in which
we can partially differentiate disturbing potential T with respect to time t.
Substituting lj_l for the quadric kernel and partially differentiating, the

result is

-1
n oL, -1 aa . 5
G Z O(.j _—J—at + Q,j -——-J—at =3¢ (38)

Y
]S

may be regarded as discrete)samples of a continuous physical variable. The

In eq. (4), the quantity T is a continuous physical variable, and the a

2;15 are fundamental geometric quantities only. If we try to evaluate the
differential eqg. in (38) to find any particular (8T/8t)i, we find that we
must specify a series of 2;%'5. These are the fixed reciprocals of distances
connecting a point of predigtion, on a plane, to n discrete and fixed points
with coordinates (Xj, Yy, 8) which represent the location of point mass
anomalies. In Euclidean geometry, there is no rate of change of the

geometry itself with time. Consequently, az;l/atj = 0. Thus, eq. (38)

reduces to
;] - T
¢ Y 4t (39)

This functionally relates a change in a point mass anomaly with time to a

change in the disturbing potential with time.
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A similar approach with eq. (5) leads to

n oda
2: —El' . = %%‘ (40)
J=1

RO

-

which together with eg. (39) implies a consistent theoretical point mass
anomaly relationship between changes in height H with time and changes in
some equivalent form of disturbing potential T with time. What is not
expressed in egs. (39) and (40) at this time are the scale factors and
other refinements associated with the factor K that would reduce the given
geometric and dynamic relationships to point mass anomaly models that are
theoretically equivalent; a first attempt at a scale reconciliation is
given near the end of this report. Hardy (1976) has shown that gravity
anomalies can be predicted equally well in Cartesian coordinates with MQ
formulations based on either egs. (4) or (5), although the theoretical

basis has not been completely established.

In making this study, it was suspected that similar results would be
found when applied to crustal movement studies. The following sections

confirm this anticipated result.

THE ERROR OF PURE PREDICTION

For this study, we isolated the pure prediction properties of a prediction
function from the associated computational procedures in practice which some-
times confuse the development of a new method. The concept involves using a
continuous "error-free" model, "error-free" data samples, and developing a
unique solution, which causes the "prediction" function to fit the continuous,
"error—-free" function exactly at all sample points. This is related to the
collocation polynomial approach (Scheid 1968, Hardy 1971) which should not be
confused with "collocation" as frequently used in geodesy by Moritz (1972) and
others. As will be seen later, the objective of this approach is to judge the
performance of a prediction function by comparing predicted ordinates with the
"error-free" ordinates at the same locations for a particular number of pre-

diction points. In other words, for the purposes of this study we define
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"pure prediction" as a critical confrontation and comparison of predicted
values with true values of a realistic error-free function, away from data

points that are fitted exactly.

The standard error of least-squares prediction for covariance functions, as
given by Heiskenan and Moritz (1967, p. 269) does not, in fact, compare pre-
dicted values with the corresponding true values. Instead, it estimates the
error of the random stochastic model in fitting the sample points (Kearsly
1977) --something quite different than the error of pure prediction as used in

this study.

In figure 1, we see a contoured plot of subsidence (in feet) in the Houston-
Galveston area for 1942 to 1973. This was used, as will be seen later, as the
basis for a fictitious, but realistic contour plot of surface velocities in

cm/yr for the same area.

Figure 2 shows a rectangular grid pattern to cover the study area, used for

two purposes:

(1) It defined the location of 49 grid intersections that would be the dis-

crete prediction points for all prediction functions used in the test.

(2) It provided the basis for a simulation of data collection in the study
area. One sample location was chosen at random in each of 36 grid rectangles.
Thirteen additional sample locations were chosen within the boundary of the

study area in an "at large" manner, thus providing 49 irregularly spaced

sample points.

Figure 3 shows the continuous "error-free" model drawn by Holdahl, inde-
pendently of the grid intersection and random sample locations. Figure 4
shows an overlay of the sample locations on the "error-free" model. The
sample points completely missed several important subsidence features and
sections of contour lines, which possibly would not have happened if the
"error-free" function had been "visible"” or known a priori. Figure 5 shows

these features and partial contour lines. The missing features illustrate an
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important point in using apparent or empirical covariance functions as a
basis for prediction. It is obvious that the missed features of the con-
tinuous "error-free" function significantly contribute to the true variance
of the "error-free" function. Conseqguently, the true variance of a real
phenomenon is generally larger than that determined from the sample variance.
When an empirical covariance function is normalized to unity for the variance,
the division is usually done with a number that is too small. Unfortunately,
there seems to be no way of predicting in advance how small this number will
be. The contemporary result of the normalization is to produce an apparent
covariance function that is too large at small distances. This phenomenon
also affects the computation of degree variances that may be substituted into
what are otherwise deterministic functions. This discussion of defects in
apparent covariance is not meant to imply that MQ or any other deterministic
prediction method will miraculously predict features that have not been
sampled. On the other hand, MQ functions of the deterministic kind are not
handicapped by this described defect in the apparent covariance, or degree
variances based on sampling, because covariances in a statistical sense are

not used as the basic function.

We will now complete the discussion of pure prediction, and describe the
accomplishment of the comparative tests. Figure 6 shows an overlay of the
prediction grid intersections on the "error-free" model. Prediction points
are located in two of the three major features missed by the data samples.
The spot velocities indicated in figures 4 and 6 were carefully interpolated
for the 49 sample points and 49 predicted points respectively. Although the
interpolations could be disputed from the present view of being "error free,"
this would pointlessly require a redefinition of pure prediction as previously
defined. The model is a logical surface velocity model associated with the
Houston-Galveston subsidence area. The interpolations are logical, if not
explicitly perfect. The philosophy of this type of test dictates that "the
model could be error free; therefore, it is.”" In other words, the assumed
"error-free" prediction peoints and assumed "error-free" sample points define
the discrete "error-free" model. The contours themselves may be viewed as an
inaccurate graphical representation of the "error-free" model, symbolizing

continuity. Consequently, the "error-free" model thus defined provides a
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beginning point for comparing prediction functions on an equitable basis. It
is assumed that the subsequenﬁ refinement by least-squares or other filtering
and smoothing techniques, presumably unbiased, will not adversely affect the
pure prediction capability of the function. In any case, all functions make
use of the same data, and are required to make predictions of the same points.
The quality of the prediction methods are judged relatively by their capa-
bility to replicate the "error-free" model at a particular number of predic-
tion points. All useful prediction methods will presumably approach the con-
tinuous error-free model arbitrarily close with sufficient data points, in
accordance with the Weierstrass theorem. What is being tested, however, is
not the basic logic of the prediction method, but the pure accuracy. Other
considerations being equal, the efficiency is an indirect, but important,
consideration because a more accurate method can presumably equal the per-

formance of less accurate methods by using fewer sample points.

COMPARATIVE RESULTS OF THE PURE PREDICTION TEST

The following prediction functions were used for comparative tests of the

"error-free" model (fig. 3):

e MO forms (n = 49)

Conic kernel:

n
s Z W, [(x - x.>2 + (Y - Y.>2]l/2 = V(X,Y). (41)
K = J J J
j=1
Hyperboloid kernel:
G & 2 2 211/2
€y, [<x-x_) +<Y—Y,> +5] = VX, V) (42)
K. 3 ] ]
J_
a) § = 5.62 km
b) 6§ = 12.51 km
c) § = 14.19 km
d) 6 = 15.90 km
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Reciprocal hyperboloid kernel:

n -
G Z w.[(x - X.>2 + (Y - Y.>2 + 52]_1/2 = Vi(x, Y) (43)
C J J J
j=1
a) § = 3.98 km
b) § = 5.62 km
c) § = 7.62 km
d) § = 9.74 km

e Bi-sixth degree polynomial (49 terms)

Form:

6 6 -
> Y oelLxY =vi, V. (44)

i=o j=o +J

The last function is not an MQ eqguation, but was included for comparison
because it is a typical polynomial form previously used in crustal movement
studies. It does not have a geophysical interpretation related to point mass
anomalies, and is called a bi-sixth degree polynomial because it is formed in

a manner similar to the well known bi-cubic polynomial.

Figures 7 through figure 15 show graphical representations of the continu-
ous surface velocity predictions for each of the MQ functions above. The
contours for each function were interpolated with respect to wvelocities at
49 irregularly spaced data points that were fitted exactly by the interpola-
tion function (except for minor roundoff errors), plus the predicted veloci-

ties of each function at 49 regularly spaced rectangular grid intersections.

Table 2 gives the statistical results for the MQ functions. The bi-sixth
degree polynomial was fitted exactly to data points, but gave such erratic
predictions between data points that neither the contouring nor statistics

are presented; this seems to be a common defect of higher degree polynomials,
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Table 2.--Accuracy of surface velocity prediction

Standard error (¢ )

Maximum of a single
Function error prediction
(§ in km) (cm/yr) (cm/yrx)
Multiquadric forms
Conic kernel + 1.63 t 0.44
Hyperboloid kernel
a) § = 5.62 + 1.85 * 0.46
b) § = 12.51 + 2.83 + 0.60
c) § = 14.19 + 3.02 + 0.63
d) § = 15.90 + 3.19 +* 0.67

Reciprocal hyperboloid kernel

a) § = 3.98 + 2.05 + 0.56
b) § = 5.62 + 1.88 + 0.46
c) § = 7.62 + 1.77 + 0.43
d) § = 9.74 + 1.88 * 0.45
Bi-sixth polynomial n.a. n.a.

GEOPHYSICAL INTERPRETATION OF THE RESULTS

From a purely geometric point of view, predictions of the surface velocities
in the Houston-Galveston area were done very well by the MQ functions. The
contoured results in figures 7 through 15 are remarkably similar, although
the depth of point masses § was varied considerably during the test. Using
the statistical results in table 2 as a guide in lieu of the graphical
results, the best nonharmonic form and the best harmonic form of the MQ func-
tions performed almost equally well. As indicated above, the bi-sixth degree
polynomial did not perform adequately. Consequently, only MQ functions will

be discussed in this section of the report.

The best statistical result, i.e., a standard error, cs = 0.43 cm/yr, was
cbtained using a reciprocal hyperboloid kernel with a point mass anomaly at

a depth § of 7.62 km. This depth was estimated a priori to be optimum by
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using eq. (28). Thus, the practical use of this formula for "flat Earth

models" has been confirmed.

The best statistical result among the nonharmonic MQ forms was obtained
with the cone as a kernel. With a standard error, Os = 0.44 cm/year, the
error estimate is only slightly worse than the best reciprocal hyperboloid.
For the conic form, which is a so-called degenerate hyperboloid, § = O.
Although the surface of an MQ formulation involving cones is continuous, its
first derivative is discontinuous at the nodal points. This discontinuity
can be removed by assigning an arbitrarily small §, e.g., S = 1—10 km, which

would have no detectable effect on either the prediction or the os = 0.44

cm/yr.

It should be noted that the standard error of MQ prediction with hyperboloid
kernels increased steadily as the depth § was increased, in contrast with the
reciprocal hyperboloid. The depth, 6§ = 14.19 km, was one of several depths
used in the series because it is the result obtained with the a priori use of
the empirical formula in eq. (29). This formula was developed a few years
ago by a best fit to a bi-cubic spline function. Although the prediction at
this depth of mass anomalies does not seem unreasonable (fig. 10), table 2

shows that it is certainly not optimum in this comparison.

In some applications, perhaps a more rigorous development of the point mass
anomaly concept, it may be found that an interaction between harmonic and
nonharmonic functions requires the use of the same depth & in both cases.

The optimum 6 = 7.62 km for the harmonic form was not used with the non-
harmonic form in this test. However, an estimate of the standard error,
i.e., 0g = 0.49, can be obtained for the use of a hyperboloid with § = 7.62
km, by linear interpolation in table 2 between 6 = 5.62 km and § = 12.51 km.
In this connection it is interesting, but may be of no special significance,
that for § = 5.62 km, the standard error, 0g = 0.46, is exactly the same for

both the reciprocal and hyperboloid kernels.

A completely rigorous geophysical interpretation of the results of this

test cannot be made because of the newness of the concept of using point mass
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anomaly models for crustal movement studies. Also, the test area in the
Houston-Galveston area involves subsurface changes that are much nearer the
topographic surface than the depths of point mass anomaly sets that were
optimum for the reciprocal hyperboloid. The average spacing of surface data
was about 17.8 km for which the optimum depth is 7.62 km, according to eqg. (28).
Denser data sets are needed to provide detailed information about mass

redistribution at shallow depths.

Subsidence in the Houston-Galveston area is generally attributed to lowering
of the water table by excessive use of ground water as a water supply source.
In other words, subsidence is the result of removal of a considerable amount
of fluid mass and reduction of fluid pressure followed by a compression of
de-watered clay layers. Geometrically, the surface has simply been lowered.
Physically, the average density of material relatively near the surface has
increased. There was probably little or no change in the mass distribution
at the 7.62 km depth. Although the coefficients of the point mass anomalies
at 7.62 km have changed as the subsidence progressed, they certainly did

not change as much as they would have for shallower point mass anomaly sets.

Another important factor has placed limitations on the details of geo-
physical interpretation that can be accomplished with this first test. The
data used for this test consisted only of velocity data for subsidence with
respect to the original terrain surface. Details of heights above mean sea
level as of 1942 and 1973 were not used, which is of no consequence for fitting
the data ordinates of the subsidence velocities in a purely geometric sense.
It could affect determining the point mass anomalies, and consequently,
the associated interpretation of them. There may have been no correlation
between the rates of subsidence with the absolute heights of the topography
in the region, but without studying that aspect, one cannot be certain.
Obviously, a fit to the subsidence velocities had to be based on a constant
height reference plane (equivalent conceptually to mean sea level) in the

absence of the detailed topography.

Also, because of the as yet undetermined K factor in the use of the

hyperboloid kernel, gravity anomalies are needed. The K factor appears



51

theoretically related to an isostatic terrain model, but in practice, it must
also include some characteristics of a heuristic constant, reflecting the
actual degree of isostatic compensation in the region, rather than theoretical
conditions. Subsidence or uplift data alone cannot provide this to facilitate
the geophysical interpretation of MQ equations; an interaction with classical
isostatic procedures must be established. Direct correlation studies of

the relationship of differential crustal movement with changes in the

gravity anomaly in the same time period would also be useful.

Having discussed the need for using topographic heights and gravity data in
future tests, we now return to a question discussed briefly in a previous
section. In particular, the validity of using egs. (39) and (43) to fit topo-~
graphic subsidence velocities needs to be established. As given, their proper
application appears to be limited to the rate of change of disturbing
potential with time. With a simple modification, these eguations are also
relevant to crustal velocities because disturbing potential is related to small
height changes by a linear proportionality. Bruns' formula, N = Ty, is a well
known demonstration of this fact because N is a geometric height separation of
the geoid and a standard ellipsoid; T is diSturbing potential; and y is a

standard gravity value, namely the proportionality constant.

Taking N and T as dependent variables, and Yy as a constant, we partially
differentiate with respect to time to obtain 9N/3t = y_laT/Bt. We may
re-express this as dH/3t = y;l 0T1/0t for our particular case. The term
dH/0t is topographic subsidence with respect to time. Thus, 3H/3t corresponds

conceptually to 9N/dt in terms of a small height separation with time. The

term T is a potential difference at the level of the topographic surface,
corresponding conceptually to disturbing potential T at ellipsoid level.

The term vy, is still standard gravity, but if the topographic height is large
we may want to adjust it to topographic level. Using this relationship, we
are justified in re-expressing the relationships in egs. (39) and (43) in

the form

=< [@

n . ’
Z w, [(x—x.)z + <Y—Y.)2 + 62]_1/2 - VX, Y). (45)
t j=1 J J ot
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Equations (40) and (42) may also be expressed as

n
w. [(x—x.)z + <Y—Y.>2 + 62]1/2 - vi{x, Y). (46)
= ) ] 3 at

J

Thus, we have established a form of theoretical equivalence of the reciprocal
hyperboloid and hyperboloid kernels for predicting vertical crustal velocities
under certain restricted conditions. The results in Table 2 have already

established the practical equivalence.

Given the same data sets, both types of kernels and their associated
coefficients respond as needed to give an unusually good surface fit. The
kernels are different and the coefficients are different (in the sense that
G wj/Yt # ij/K in general), yet the sums of their respective products at any

given evaluation point result in uncannily similar predictions.

Equation (45) should be considered the most reliable for isolating the
actual time rate of change of the point mass anomalies because the quantity
Ye is relatively well known, whereas K is not. For the present, it is tenta-
tively assumed that K is a single constant for a region, but it may turn out
that there is a Kj for each point mass anomaly. Because K seems to be de-
pendent, in any case, upon each actual topographic height and upon the degree
of isostatic compensation rather than upon a differential change in height, it
is important to use more detailed data in future tests. As previously men-
tioned, both gravity anomalies and actual topographic information associated
with subsidence or bulge topography are needed to assist in quantifying the
so-called K factor. With sufficient refinement, eq. (46) should complement
the usefulness of eq. (45), and together support a more complete geophysical

interpretation of the mass redistribution associated with crustal movements.
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CONCLUSIONS AND RECOMMENDATIONS

The basic conclusions reached as a result of this investigation are

(1) MQ equations, both harmonic and nonharmonic, are suitable as geometric

prediction functions associated with crustal movement studies.

(2) MQ equations have the potentiality for usage in interpreting mass

redistribution associated with crustal movements in a mascon anomaly form.

(3) More data are needed for future studies to develop the full pétential,

and limitations, of mascon anomaly models.
It is recommended that:

(1) The computer programs used in this study (not a part of this report)

be documented and filed for future use in crustal movement studies.

(2) Investigations of this type be continued for studies of crustal

movement.

(3) Data for future crustal movement studies by geodesists should include
detailed gravity and topographic information in addition to the topographic

bulge or subsidence information provided by geodetic leveling.
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